
This paper investigates the nature of the risk-return tradeoff facing firms. The 
model is derived from a firm’s intertemporal profit maximization condition under 
uncertainty with the short-run variable cost function and is framed in the context 
of a production-based asset pricing model. We identify output growth, the 
investment-capital ratio, variable input price growth, and technology shocks as the 
fundamental factors governing the risk-return tradeoff over time and across equities. 
We find that the investment-capital ratio captures the influence of business cycle 
fluctuations as well as the role of firm size and the book-to-market ratio in equity 
returns. Finally, we examine a joint link between capital investment and equity 
returns using Tobin’s , and show that while investment determines equity returns, 
it responds negatively to changes in the risk premium.
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Ⅰ. Introduction

Risk taking is a fact of life in an uncertain world. Higher risk is often 
associated with a higher return. Consider small businesses or entrepreneurial 
ventures. They are a sizeable and growing part of the economy, and account 
for much of the capital stock, employment, and a surprisingly large fraction 
of innovations in most U.S. industries [Brock and Evans (1987)]. These firms 
are young and growing, and tend to invest in fertile activities that generate 
higher rates of profits or returns than large firms. Entrepreneurial activities, 
however, carry with them substantial risks. Small firms are likely to be highly 
leveraged and may face a higher probability of default and failure than large 
firms [Brock and Evans (1987)]. Moreover, because small firms operate on a 
smaller scale, their production and hence profits are more sensitive to shocks. 
To the extent that this volatility cannot be diversified away, this should 
translate into a higher risk premium for small firms than for large firms. These 
considerations suggest that firms often trade risk for higher profits or returns.

This study investigates the nature of the risk-return tradeoff facing 
entrepreneurship and firms. While there are earlier studies analyzing this 
issue in asset pricing models [Chan and Chen (1991), Fama and French, 
(1992, 1993), Daniel and Titman (1997), Perez- Quiros and Timmermann 
(2000)], they lack theoretical underpinnings of firm behavior and there is 
little formal knowledge about the risk-return tradeoff inherent in the 
commitment of capital to new high risk ventures. In fact, these studies are 
silent about the forces that determine the risk-return tradeoff, and many 
variables used to explain equity returns are chosen largely on the basis of 
goodness-of-fit rather than the directives of a well developed theory. This 
research intends to redress the shortcomings of earlier studies by proposing 
a microfoundational framework to address many issues in the risk- return 
tradeoff facing firms.

The model is derived from a firm’s intertemporal profit maximization 
condition under uncertainty, with the short-run variable cost function by 
taking physical capital as a quasi-fixed input. It is framed in the context 
of a production-based asset pricing model and belongs to a class of the 
stochastic discount factor model that is widely used in modern financial 
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research (see the Appendix for a brief summary). The model allows us to 
find the risk factors determining equity premium or returns. With 
adjustments costs in physical capital, we can also analyze a firm’s capital 
investment decision and examine a joint link that lies between physical 
investment and equity returns. We identify output growth, capital stock 
growth or the investment-capital ratio, variable input price growth, and 
technology shocks as the fundamental risk factors governing the risk and 
return relationship over time and across equities. Of particular note in this 
finding is the investment-capital ratio. Cochrane (1991, 1996) shows that 
investment growth rates or investment-capital ratios determine equity returns 
[Li et al. (2004)]. The present model therefore lends support to Cochrane’s 
use of the investment-capital ratio, but there are other relevant risk factors 
determining expected returns such as output growth, variable input price 
growth, and technology shocks. We then examine the Hansen-Jaganathan 
volatility bounds [Hansen and Jaganathan (1991)] in the context of the 
production-based asset pricing model. They are typically derived with 
consumption- based models [Campbell et al. (1997), Chochrane (2001)].

Identifying the risk factors that can explain the cross-sectional variation in 
equity returns continues to be a central issue in finance. The proposed model 
is particularly useful to address this issue because it is based on a firm’s 
optimization behavior. Earlier studies find that the expected return is 
negatively associated with firm size [Banz (1981), Chan and Chen (1991), 
Fama and French (1992), Daniel and Titman (1997)]. Fama and French 
(1993) demonstrate that market portfolio, firm size, and the book-to-market 
ratio explain the cross-sectional variation in stock returns. We show that these 
variables constitute proxies for exposure to the underlying economic factors 
identified in this paper. In particular, expected returns are negatively related 
to firm size because small firms have more potential to exploit economies 
of scale and are more exposed to production risks than are large firms. 
Further, we find that the investment-capital ratio captures the role of both 
firm size and the book-to-market ratio in equity returns. The proposed model 
is a linear multifactor model for asset pricing where the fundamental risk 
factors themselves are economic, state variables that are now identified from 
first principles rather than out of goodness-of-fit considerations to explain the 
time series as well as cross sectional pattern of expected equity returns.
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We solve a firm’s capital investment decision problem by allowing for 
adjustment costs of capital and examine the joint behavior between equity 
returns and physical investment. In traditional investment models, future 
cash flows are usually discounted at a constant interest rate and the effect 
of time-varying discount rates is ignored. Thus physical investment responds 
only to risk-free constant interest rates, implying that capital investment and 
equity returns are independent of each other. This is a reflection of the 
long-standing intellectual division between macroeconomics and finance, 
but is not a valid assumption in an uncertain, stochastic environment. We 
allow the discount rate to vary stochastically over time and examine how 
Tobin’s Q and hence investment are related to expected future returns. An 
important finding of this study is that a firm’s intertemporal equilibrium 
condition helps determine the stochastic discount factor and hence equity 
returns, but the investment decision is driven by adjustment costs. In earlier 
studies [Cochrane (1991)], in contrast, both optimal investment and equity 
returns are driven by adjustment costs. We find that physical investment 
responds negatively to changes in the risk premium or expected future 
equity returns. However, according to the asset pricing equation, investment 
determines equity returns, so there is a clear simultaneous or joint link 
between equity returns and investment. This simultaneity is not well 
recognized in the investment and asset pricing literature. The paper’s results 
carry implications for risk analysis, cost of capital calculations and 
investment analysis, the equity premium puzzle, and other applications.

Ⅱ. The Risk-Return Tradeoff Facing Firms as Reflected in the 
Stock Market: A Production-based Model of Asset Pricing 
with the Short-run Variable Cost Function

The cost function summarizes a firm’s optimizing behavior. As such, this 
function indirectly reveals its risk behavior as well.1) A firm operating in 

1) This idea is in stark contrast to the traditional analysis of risk taking firms. This analysis 
uses the utility function to describe a firm’s risk behavior. See Moschini and Hessessy (2000) 
for an extensive discussion of a firm’s risk behavior as applied to agriculture.
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a region of declining marginal costs will react very differently to a change 
in demand than a firm operating in a region of rising marginal costs. Figure 
1 illustrates this point with the total cost curve.2) A concave portion of the 
curve occurs at low levels of output, while a convex portion occurs at high 
levels of output. This kind of the total cost curve produces the standard 
U-shaped average and marginal cost curves. The concave portion of the total 
cost curve corresponds to a region of declining marginal costs, and the 
convex portion is associated with a region of rising marginal costs. Suppose 
that a firm operates in the concave portion of the total cost curve or in a 
region of declining marginal costs. If the firm produces A units each period, 
its average cost per unit is C1. If, however, the firm varies output between 
producing A  units in one period and A units in the next period, its 
average cost per unit is C2. By standard arguments using Jensen’s inequality 
for a concave function, the latter strategy makes lower cost. Thus the firm 
will find it optimal to allow production to vary more than demand or sales. 
In contrast, a firm operating in the convex portion of the total cost curve 
or in a region of rising marginal costs will find it optimal to keep production 
constant. In Figure 1, if demand or sales varies between B  and B 
units, the firm can reduce cost by producing B units each period instead of 
varying output by arguments using Jensen’s inequality for a convex function. 
Inventories reduce fluctuations in demand by allowing a firm to produce a 
constant flow of output.

From the above result, we have

DEFINITION. The degree of production risk () can be measured from a 
firm’s cost function and is defined by

 ≡ 





≡ 

  (1)

where   is the output level at time  and   is the marginal cost of 
output at time .

2) The ensuing discussion draws on Ramey (1991).
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<Figure 1> Cost curve and the variability of produciton

Then we can state

PROPOSITION 1. If the degree of production risk is negative, i.e.,    , 
marginal costs are rising and a firm finds it optimal to keep production 
constant and hence to smooth production. If, on the other hand, the degree 
of production risk is positive, i.e.,   , marginal costs are declining and 
a firm finds it optimal to vary production. In this case, a firm experiences 
volatility of production and is therefore bearing a high risk.

We can relate the degree of production risk to the extent of returns to scale, 
which is measured from the slope of the average cost curve.
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RESULT 1. The degree of production risk is related to the degree of returns 
to scale. When there are increasing returns to scale or economies of scale, 
the degree of production risk is positive, while the degree of production risk 
is negative with decreasing returns to scale or diseconomies of scale.

Importantly, a firm’s risk behavior impinges on the risk premium of its 
equity. If a firm operates in a region of declining marginal costs or increasing 
returns to scale, it is facing a high risk because of the possibility of production 
volatility and investors need to be compensated with a higher return to bear 
the risk. This implies that the risk premium of a firm’s equity mirrors its risk 
behavior about demand and cost conditions. This idea provides the catalyst 
for the production-based CAPM (Capital Asset Pricing Model) developed by 
Kim (2003). Formally, in the production-based asset pricing model, the 
stochastic discount factor is equal to a firm’s intertermporal marginal rate of 
transformation or substitution in output supply represented by the ratio of 
discounted marginal costs in two periods. The excess return that a firm must 
earn, and hence offer to its investors relative to the risk-free return, depends 
on the covariance with the marginal cost of output or the ratio of discounted 
marginal costs. If a firm’s equity offers a return that is negatively correlated 
with the marginal cost, then it must command a higher return. In particular, 
a firm wants to have a higher output level if its price increases. On the other 
hand, if the marginal cost of this increase in output is large, this means that 
the firm is bearing a high risk and it needs to be compensated. In this case, 
investors will expect a higher return.

In Kim’s (2003) model, all inputs are considered variable and are 
assumed to adjust fully to their optimizing levels within a given period. 
This assumption may be reasonable for most inputs, but not for physical 
capital because of the presence of adjustment costs. In fact, physical capital 
is a quasi-fixed input-fixed in the short run but variable in the long run. 
Treating physical capital as a quasi-fixed input instead of a variable input 
is more realistic and allows us to examine many issues that are not possible 
with Kim’s (2003) model. In particular, it allows us to derive the 
investment-capital ratio, which is shown to be a key risk factor explaining 
the cross sectional variation in equity returns (see Section 3). It also helps 
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us to analyze a firm’s capital investment decision and to examine a joint 
linkage between and capital investment and equity returns (see Section 4).

We consider two sets of inputs: variable inputs (such as labor, energy, 
and materials) and physical capital as a quasi-fixed input. Firms act as price 
takers in input markets and face the non-competitive output market. 
Adjustment costs are separable from production costs. This is a common 
assumption in the literature [Hubbard (1998)]. Since adjustments costs in 
physical capital determine a firm’s capital investment decision, this 
assumption allows us to separate a firm’s short-run decision from its 
long-run investment or capital decision. Here we analyze a short-run 
decision facing a firm with a given capital stock. We will incorporate 
adjustment costs into a firm’s full optimization problem and discuss its 
investment decision in Section 4.

Then according to the duality principle [Chambers (1988)], we can define 
a firm’s discounted variable cost function as the solution to minimizing the 
short-run variable costs of producing a given level of output subject to a 
predetermined capital stock:

         (2)

where   is the discounted expenditure on variable inputs at time  ( 

=1, 2, …),   is the level of output at time ,   is a vector of discounted 

variable input prices at time  whose elements are        ,    
is the stock of physical capital at the beginning of time , and    denotes 
the technology level or shock at time .

The short-run variable cost function (2) is well known in static analysis 
except that input prices are discounted [Brown and Christensen (1981), 
Berndt and Fuss (1986)]. The cost function is discounted because a firm 
makes a production decision in the current period considering all future 
events. It has the following regularity properties: it is linear homogenous 
in  , increasing in   and  , decreasing with respect to   ; it is also 

concave in   and convex in  . Moreover, application of Shephard’s 
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lemma gives the variable input demands:



        
                 (3)

where  is the demand for the  th        variable input. 
            , which measures the reduction in variable 
costs due to an increase in capital stock.

To derive implications for equity returns, we consider the familiar 
Cobb-Douglas form for the variable cost function (2):

         
∏  

    


 (4)

where ’s are parameters to be estimated.3) According to Shephard’s lemma 
(3) applied to (4),  ⋅    , which is the share of the 
 th        input in total variable cost. The linear homogeneity of 
the cost function implies that ∑  

   . Technical change is assumed 
to be Hicks neutral. We also have



 
      

  
∏ 

    


   (5)

The condition ⋅   , together with the convexity of (4) with 
respect to  , implies that    . It turns out that 
 ⋅     , which is the share of capital in total 
variable cost. The parameter   is related to the degree of short-run returns 
to scale. The degree of short-run returns to scale derived with the capital 

3) The specification of a technology shock in the cost function is not the same as that in the 
production. A technology shock affects the production function directly, but it affects the cost 
function negatively. Thus it enters into the cost function in an inverse form.
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stock held constant is measured from the slope of the average variable cost 
curve and is defined by                 
[Christensen and Greene (1976)]. When   , short-run increasing 
returns to scale or economies of scale exist;    implies short-run 
decreasing returns to scale or diseconomies of scale, and    implies 
short-run constant returns to scale. For (4), the degree of short-run returns 
to scale is equal to   .

From (4), we obtain short-run marginal cost as



 
      

  
  ∏ 

    


 (6)

From (6), we find that   ⋅      . Thus the 
degree of production risk is equal to the degree of returns to scale. We 
derive the stochastic discount factor as the ratio of two successive marginal 
costs:

  ≡
 
       

                   

 
   

  

∏  






  

      





 






  







(7)

which is a nonlinear function of output growth, variable input price growth 
(adjusted by a technology shock), and capital stock growth. For analytical 
tractability, we take a first- order Taylor approximation of this function to 
obtain the following linear discount factor equation:

   ≈        ∑  
           

      (8)
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where   is the first difference operator. An important variable that we will 
consider later is              , which is the growth rate 
of the capital stock or the (net) investment-capital ratio. We can now apply 
the stochastic discount factor model (see the Appendix) to (8) to identify 
the risk factors determining the equity premium or returns, which is a key 
concern in asset pricing. Provided that output growth, input price growth, 
and capital stock growth are orthogonal to one another, we have

           −          
∑  

             

           (9)

where     is the real rate of return on an asset from time  to time   
and  ⋅ denotes covariance conditional on information at time t. We 
then obtain:

PROSITION 2. With the variable cost function of the Cobb-Douglas form 
(4), the equity risk premium is expressed as 4)


 



       


                     

∑  
                (10)

          

where     is the risk-free rate of return from time t to time   , and 
 ⋅  is an expectation conditional on information available to investors 
at time .

4) A similar expression can be derived by taking a lognormal approximation. In this case, there 
is a variance term on the left hand side of (25) to adjust for Jensen’s inequality (see Kim, 
2003).
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Equation (10) shows that the risk premium of a firm’s equity is the sum 
of three conditional covariance terms. The first term is the covariance of 
equity returns with output growth scaled by the degree of returns to scale. 
The second term is the weighted sum of the covariance of equity returns 
with input price growth adjusted by a technology shock; the weight is given 
by the cost share of an input. The third term is the covariance of equity 
returns with capital stock growth. Note that the covariances are conditional 
on information available at time  and vary over time, producing a 
time-varying risk premium. We can expect the covariance between equity 
returns and output growth to be positive because a firm with growing 
demand will invest in anticipation of a higher return. Then, ceteris paribus, 
the degree of short-run returns to scale can tell us about the presence or 
absence of the risk premium.5) A firm with increasing returns to scale or 
economies of scale    exhibits a positive risk premium, while a 
firm with decreasing returns to scale or diseconomies of scale     
has a negative premium. In the absence of input price and capital stock 
growth, a firm with constant returns to scale      has no return 
differential with a risk-free asset.

In addition, since the cost share of an input is positive 
           , the effect of input price growth on the risk 
premium depends on the sign of the covariance of equity returns with input 
price growth. If the covariance is positive, higher input price growth makes 
a risky firm more desirable, producing a negative risk premium. If the 
covariance is negative, on the other hand, higher input price growth makes 
a risky firm less desirable, producing a positive risk premium. With 
negative  , the effect of capital stock growth on the risk premium depends 
on the covariance of equity returns with capital stock growth. If the 
covariance is negative, we expect that higher capital stock growth or higher 
investment-capital ratio will lead to a lower risk premium. These results 
suggest that, although there are constant returns to scale or there is 
production smoothing by firms (for these firms, the covariance between 
equity returns and output growth is zero), a (positive) risk premium can 

5) While we present the result based on short-run returns to scale, it can be applied to long-run 
returns to scale as well.
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arise with input price and/or capital stock growth. In sum, equation (10) 
suggests that to the extent that different risks faced by a firm cannot be 
diversified away, they will translate into a higher risk premium and hence 
a higher equity return of a firm.

The Hansen-Jagannathan volatility bounds [Hansen and Jagannathan 
(1991)] are typically derived in the context of the consumption-based 
CAPM. We can derive the Hansen-Jagannathan volatility bounds for the 
production-based model. The mean of the stochastic discount factor     
can be considered 1, i.e.,       ≈ . Since output growth, input price 
growth, and capital stock growth are orthogonal to one another, the variance 
of the stochastic discount factor in (7) is

        
       (11)

 ∑  
 

            
      

where  ⋅ is variance conditional on information at time . We can 
then state the following:

RESULT 2. The Hansen-Jagannathan volatility bounds for the 
production-based model can be approximated by

  

        


≤  

    

≈  
      ∑  

 
          

 
     

(12)

where      and      are standard deviations of    and 
   , and               is the Sharpe ratio. In particular, 
when variable input prices are constant and the capital stock grows 
constant over time, the Hansen-Jagannathan volatility bounds are given by
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   

        


≤  

    
≈            (13)

When    , the maximum Sharpe ratio is equal to the variability of 
output growth. When    (short-run constant returns to scale), the 
maximum Sharpe ratio is equal to zero.

Hansen and Jagannathan’s bounds test is a very useful tool because it can 
be conducted as a diagnostic tool to check whether a firm’s production 
process is consistent with some important moments of equity returns and 
hence to check the validity of the proposed production-based asset pricing 
model.

While equation (10) provides an informative framework to analyze equity 
returns, it can be equivalently expressed as a multifactor beta asset pricing 
model.

PROPOSITION 3. Given the linear stochastic discount factor (7), we have 
the expected return-beta representation of the form:

                 ∑  
             (14)

where

  ≡   


  ≡                 

  ≡      
       

   ≡                  
   

       

   ≡      
                   

   ≡               

   ≡      
       



Risk and Return in Production 15

Here the betas (’s) are the factor loadings defined by the coefficients in 
a regression of equity returns on output growth      , input price 
growth adjusted by a technology shock          , and capital 
stock growth or the investment-capital ratio      :

            ∑  
            

          (15)

where     is a iid white noise. (More precisely, because output growth, 
input price growth, and capital stock growth are assumed to be orthogonal 
to one another, the betas are derived from a series of a simple regression 
of equity returns on each variable. Equation (15) allows for a general case 
that does not assume the orthogonality of the variables.) ’s are the prices 
of risk factors associated with output growth, input price growth, and 
capital stock growth. Conversely, given ’s and ’s of the form in (14), 
we can find ’s such that (7) holds.

Equation (14) has the standard structure of a multifactor beta pricing 
model [Cochrane (2001)]. Equation (15) shows that the proposed model is 
a linear multifactor model with four fundamental risk factors that price 
equities, namely output growth, variable input price growth, capital stock 
growth or the investment-capital ratio, and technology shocks (their effect 
is subsumed in the input price growth). These variables govern the 
risk-return trade facing entrepreneurship or firms in the proposed production- 
based model. It is important to note that the betas and the risk prices are 
conditional on information at time  and vary over time, producing 
time-varying expected equity returns. Equations (10) and (14) essentially 
provide the same information about equity returns. In fact, one model can 
be derived from the other, and vice versa. However, we can gain more 
insight from (14) than from (10) to explain the variation in expected equity 
returns across firms. In particular, the predictable variation in equity returns 
can be driven by changes in betas and changes in risk prices. Output growth 
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has a positive beta      , given that the covariance between equity 
returns and output growth is positive. With substantial evidence on 
economies of scale for many firms, i.e.,      , we expect that output 
growth also has a positive risk price      . Input price growth, 
however, has a negative beta               to the extent that 
an increase in input price raises the cost of production without raising the 
price of output; it also has a negative risk price               
since            . A negative beta together with a negative risk 
price for input price growth produces a positive risk premium for this factor. 
Capital stock growth or the investment-capital ratio has a positive beta 
      assuming a positive covariance between equity return and 
capital stock growth, and a positive risk price       since    . 
The expected return of an equity is high if that equity has a high beta or 
a large risk price of a factor. In particular, a high (low) value of returns 
to scale together with a high (low) output growth variability yields a high 
(low) risk price of output growth. Given a positive value of the beta for 
output growth, this in turn produces a high (low) expected equity return. 
From a conditional point of view, evidence shows that the time-varying risk 
price () explains expected returns better than time-varying undiversifiable 
risk as measured by beta () [Lettau and Ludvigson (2001) for evidence 
from a consumption-based model].

While some of the variables identified here are considered in earlier 
studies, they are largely chosen atheoretically to fit the data rather than 
derived from the directives of a well developed theory. Of particular note 
is the investment-capital ratio. In Kim’s (2003) model with capital taken as 
a variable input, the return on capital, which is approximated by the growth 
rate of the rental price of capital, takes the place of capital stock growth 
or the investment-capital ratio. In Cochrane’s (1991) investment-based asset 
pricing model, the factors are investment returns or investment growth rates 
[Li et al. (2006)]. The identification of variable input price growth as a 
determinant of equity returns is also important. In particular, our model can 
explain higher oil prices associated with the Iraq war as a risk factor, 
leading investors to demand higher risk premium. Unfortunately, none of 
the earlier studies have heretofore ascertained all of the variables identified 
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here - output growth, the investment-capital ratio, variable input price 
growth, and technology shocks - as fundamental to explaining equity 
returns.

There is considerable evidence that excess stock returns vary over 
business cycles: the risk premium should be higher at the bottom of a 
business cycle when investors require a higher excess return to hold risky 
assets (stocks) [Siegel (2002)]. Also, to allow for time-varying risk premia 
or equity returns, business cycle variables such as real GDP or investment 
growth are often used as conditioning variables [Lettau and Ludvigson 
(2002), Cochrane (1996)]. Our model has business cycle variables built into 
it and therefore can explain cyclical variation in asset returns. In particular, 
volatility in aggregate investment spending characterizes business cycle 
fluctuations, and technology or productivity shocks are identified as a 
driving force for business cycles [Kydland and Prescott (1982)]. Because 
the investment-capital ratio and technology shocks determine equity returns 
in our model, this clearly suggests cyclical variation in equity returns.

Ⅲ. Cross-Sectional Variation in Expected Returns: What Do 
Fama and French’s (1992, 1993) Three Factors Represent?

The paper’s proposed model is couched in the context of a representative 
firm framework. When markets are complete, firms can be aggregated into 
a single representative agent, which allows us to analyze aggregate time 
series equity returns of an industry or the economy. The production-based 
asset pricing model, one the other hand, views each firm that employs a 
specific production technology as if it were an asset to investors that 
generate different rates of returns. We can allow for heterogeneous firms 
with different marginal costs of production by introducing different 
production shocks or different returns to scale. The model is, therefore, 
particularly, useful to analyze the cross-sectional variation in equity returns.
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<Table 1> Long-Term Returns of NYSE/AMEX/Nasdaq Stocks Ranked by Size, 1926-2000*

Size
Decile

Geometric
Mean

Standard
Deviation

Market
Beta

Largest firm in
Decile, Sept. 2000

Total Capitalization of 
Decile, Sept. 2000

Largest 10.26% 19.0% 0.91 $524.35B $11,757B

2 11.32% 22.7% 1.04 $10.34B $1,797B

3 10.59% 24.5% 1.09 $4.14B $865B

4 11.52% 27.6% 1.13 $2.18B $547B

5 11.32% 30.1% 1.16 $1.33B $400B

6 11.31% 30.2% 1.18 $840.0M $287B

7 10.99% 32.5% 1.24 $537.7M $222B

8 11.27% 34.7% 1.28 $333.4M $138B

9 12.59% 38.8% 1.34 $192.6M $117B

Smallest 16.71% 49.3% 1.42 $84.5M $74B

* Taken from Siegel (2002, p. 133).
Note: B = billion, M = million.

Small stocks on average outperform large stocks, and the relationship 
between firm size and expected stock returns is well documented in the 
literature. Table 1 presents long-term compound annual returns on stocks 
listed on the New York Stock Exchange, the American Stock Exchange, and 
the Nasdaq, sorted into deciles according to their market capitalization, 
1926-2000 [Siegel (2002)]. The top two deciles, or the top 20 percent of 
all firms, are often called large-cap stocks and comprise most of the 
Standard & Poor (S&P) 500 Stock Index. Deciles 3 through 5 are called 
mid caps; deciles 6 through 8 are called low (or small) caps; and the 
smallest 20 percent are called micro caps. The annual return on the smallest 
decile of stocks is about 6 1/2 percentage points higher than the largest 
decile, and the standard deviation of these small stocks is also higher. In 
general, there is clear evidence that the expected return is negatively 
associated with firm size; that is, small firms have higher expected returns 
than large firms do. However, the portfolio beta is not high enough for the 
smaller capitalization stocks to justify their extra return. This captures one 
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of the failures of the traditional CAPM (Capital Asset Pricing Model), 
known as the celebrated “small-firm effect” (Banz, 1981). There have been 
many attempts to account for the small firm effect, but results are not 
satisfactory [Chan and Chen (1991), Daniel and Titman (1997)].

Fama and French (1992, 1993) note that a firm’s average stock return 
is related to size (market capitalization) as well as value (book value to 
market value ratio) [Hodrick and Zhang (2001), Siegel (2002) for recent 
evidence]. They find that these two variables capture much of the 
cross-sectional variation in stock returns. Firm with small market value 
have, on average, higher returns. On the other hand, firms with high book 
values relative to market equity have, on average, higher returns. To capture 
two features of average returns (the size and value effects), Fama and 
French (1993) posit a three- factor model in which the priced risk factors 
are market, size, and value factors. The market risk premium is the excess 
of the value-weighted market portfolio over the risk- free return (the return 
on a Treasury bill rate). The size factor is the difference in the return on 
a portfolio of small capitalization stocks and the return on a portfolio of 
large capitalization stocks. The value factor is the difference between the 
return on a portfolio of high-book-to-market stocks and the return on a 
portfolio of low book-to-market stocks. Fama and French (1993) show that 
the three-factor-model performs well in explaining the cross-sectional 
variation in stock returns. They argue that the three factors may proxy for 
firm risk sensitivities, thus compensating investors with higher expected 
returns. The Fama and French model, or some extended variation of it, has 
become the workhorse that now dominates empirical research in asset 
pricing [Cochrane (2001) for a survey].

There are, however, outstanding issues with the Fama and French model. 
The model is empirically motivated, and it is not yet clear how their factors 
are related to the underlying economic risks so proxied [Li et al. (2006)]. 
As a result, there is a continuing debate about Fama and French’s three 
factors. The issue is not about whether the size and value factors can 
explain expected returns; rather it centers on whether these factors can 
possibly represent or capture economically relevant nondiversifiable, and 
therefore aggregate, risk. Daniel and Titman (1997) suggest that it is firm 
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characteristics themselves, rather than the size and value factors, that seem 
to be related to expected returns, having little resemblance to risk. Our 
production-based model is theoretically based with strong microeconomic 
underpinnings of firm behavior, and can offer new insight to show how 
Fama and French’s factors are related to underlying economic risks so 
proxied.

Small and large firms have varying size as well as varying production 
and risk characteristics [Cooley and Quadrini (2001)]. Evans (1987) and 
Hall (1987) demonstrate that the growth rate and the variability of growth 
of U.S. manufacturing firms are negatively associated with firm size and 
age. On the other hand, small firms have more potential to exploit scale 
economies than do large firms [Nguyen and Resnek (1991)], implying that 
the degree of returns to scale is negatively related to firm size. Moreover, 
small firms are more exposed to production risks and changes in the risk 
premium than large firms. In particular, small firms face greater variability 
in output and investment growth than large firms. We then can expect a 
higher risk price or premium associated with output growth and the 
investment-capital ratio for small firms than for large firms. Also, small 
firms are more susceptible to input price shocks than are large firms, again 
producing a higher risk price or premium associated with input price growth 
for small firms than for large firms. Provided that the betas are the same 
for small and large firms, we can then expect a greater expected return for 
small firms than for large firms.

In addition, we expect that firms with different sizes and book-to-market 
ratios have different investment behavior. The book-to-market ratio is the 
inverse of Tobin’s (average) q, which is equal to the ratio of the market 
value of a firm to the replacement cost of capital. As will be shown in the 
next section, because the investment-capital ratio is positively related to 
Tobin’s q, this means that the book-to-market ratio is inversely related to 
the investment-capital ratio. The investment-capital ratio, in effect, contains 
the same information as the book-to-market ratio. Xing (2008) provides 
evidence for U.S. manufacturing and non-manufacturing firms that firm size 
as well as the book-to- market ratio are related to the investment-capital 
ratio. Size is negatively related to the investment-capital ratio after 
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controlling for the book-to-market ratio. That is, small firms have higher 
investment-capital ratios than large firms with similar book-to-market ratios. 
The book-to-market ratio is also negatively related to the investment-capital 
ratio after controlling for firm size. That is, firms with low book-to-market 
ratios have higher investment-capital ratios than firms of similar size with 
higher book-to-market ratios. To encapsulate these results, we have

PROPOSITION 4. Firm size and the book-to-market ratio are negatively 
associated with the investment-capital ratio. This suggests that the 
investment-capital ratio captures the role of both firm size and the 
book-to-market ratio, the two variables that are shown to capture much of 
the cross-sectional variation in stock returns.

Cochrane (1996) uses two components of aggregate investment - residential 
and nonresidential investment - and demonstrates that the investment-based 
model performs considerably better than the consumption-based CAPM and 
about as well as the traditional CAPM. Li, Vassalou, and Xing (2006) use 
aggregate sector investment growth rates, including household sector 
investment that is largely residential, as risk factors and find that their model 
can price the size and value portfolios at least as well as Fama and French’s 
three-factor model to account for a large fraction of the cross-sectional 
variation in equity returns. While previous findings provide strong evidence 
for the investment-based asset pricing model, our analysis shows that there 
are other state variables in explaining the cross sectional variation in equity 
returns. In particular, since each firm is assumed to face the same input 
prices, there is no variation in input price growth across firms. However, 
firms face different technology shocks with different output levels. Then from 
our model, we can argue that output growth, the investment- capital ratio, 
and technology shocks are the fundamental risk factors determining the cross 
sectional variation in equity returns.

Notably, our model does not include portfolio returns considered in the 
traditional CAPM. Cochrane (2001) argues that asset pricing models that use 
portfolio returns leave unanswered the question of what explains the 
return-based factors. Further, according to Merton (1973), variables that 
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predict market returns should show up as risk factors that explain the cross- 
sectional variation in average returns. We have identified these variables from 
the directives of a firm’s intertemporal equilibrium condition to explain the 
time series as well as cross sectional pattern of expected stock returns. The 
variables identified here are considered state variables or sources of priced 
risk in the spirit of a multifactor or intertemporal capital asset pricing model 
of Merton (1973). We can argue that these risk factors are orthogonal to the 
overall market return. Then Fama and French’s three factors are indicator 
variables for exposure to the underlying economic factors identified in this 
study - output growth, the investment-capital ratio, and technology shocks.

Ⅳ. Adjustment Costs, Tobin’s Q, and the Joint Link between 
Capital Investment and Equity Returns

In the asset pricing model (see (10) or (14)), investment - more precisely, 
the investment-capital ratio - (and the output level) determines equity returns, 
but it is treated as exogenous. Investment, however, is an endogenous 
choice variable in a firm’s optimization problem. Analysis of a firm’s 
investment requires the specification of an adjustment cost function 
        that is a function of gross investment   , the stock of 
physical capital   , and an exogenous shock  . The adjustment cost 
function is linear homogeneous in    and   , increasing in    but 
decreasing in   , and convex in    and   .

A firm’s problem is to maximize the market value of equity, which is 
equal to the expected present value of all future profits or cash flows to 
its shareholders, by choosing the optimal levels of output, variable inputs, 
and investment, subject to the capital accumulation constraint with 
adjustment costs. Firms face perfectly competitive markets with respect to 
variable inputs but a non-competitive output market. The optimization 
problem can be solved in a two-step procedure.6) In the first stage, the firm 

6) See Chirinko (1993) and Hubbard (1998) who use the production function framework rather 
than the cost function used in this study. All of these studies are, however, based on a constant 
interest rate and do not consider the link between equity returns and investment.
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determines the optimal choice of output and investment across periods by 
maximizing the expected present value of cash flows in the presence of the 
costs of adjustment, conditional on the given quantities of variable inputs. 
In the second stage, the short-run variable costs are minimized to choose 
the optimal input quantities at each period subject to a production constraint 
with the chosen output level. The second-stage problem is summarized by 
the short-run variable cost function (19). Given this cost function, the 
first-stage problem is:

     
∝  ∑  

∞ ∏  
     

 

                       (16)

subject to

                (17)

with a given initial capital stock      . Here p is the price of output 
at time          ,   is a vector of undiscounted nominal 
variable input prices at time  ,   is the price of capital goods at time 
 ,  is the constant rate of depreciation of the capital stock, and     is 
the nominal rate of return on equity required by investors that is used as 
a discount rate between time v and   . Uncertainties arise because both 
future output and input prices as well as technology and adjustment cost 
shocks make a firm’s profitability unknown, and future rates of return are 
unknown at the time of decision making. Note that, in the above 
formulation of the intertemporal profit maximization problem, the 
undiscounted cost function        , rather than the discounted 
cost function        , is used in accordance with the convention 
in the literature [Chirinko (1993), Pindyck and Rotemberg (1983)]. The 
linear homogeneity of the cost function allows us to convert the 
undiscounted cost function into the discounted cost function such that 
                      .
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The first-order conditions for output and investment in the above 
intertemporal profit maximization problem are




 

   




        


          (18)

and


 

       
 

 (19)

where   is the discounted price of output at time ,  is the price elasticity 

of the demand for output that is constant over time, and   is the imputed 
value or shadow price of capital to a firm of an additional unit of installed 
capital at time . Equation (18) is the profit maximization condition across 
time. In particular, when    (current period), this equation is the familiar 
static profit maximization condition at which the price of output equals 
marginal cost, i.e.,            , for a competitive firm. 
The right hand expression of (18) exploits the linear homogeneity of the 
cost function to convert the undiscounted cost function         
into the discounted cost function        . Equation (19) is the 
first-order condition for optimal investment and shows that adjustment costs 
drive a firm’s investment decision. Moreover, the first-order condition for 
capital describes the evolution of  , the shadow value of capital, according 
to


  






 

                       
 


 (20)

With the transversality condition:

lim
→∞





∏       

         



   (21)
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the solution of (20) yields


  




∑  ∞ ∏  

  
  

       


        (22)

This equation states that the shadow price of installed capital is equal to 
its expected present discounted value of the stream of the marginal benefits 
of a unit of capital installed at time  , which consists of marginal cost 
savings generated from the reduction in both variable costs 
            and adjustment costs      
    made possible by an additional unit of installed capital.

The profit-maximization condition (18) holds for current as well as future 
periods. It then implies that, between two periods  and   , the following 
intertemporal equilibrium condition must hold:



 
     

 




 

        


 (23)

or





    

        

                   


   (24)

where                such that    ≈        with 
           being the rate of increase in the price of output. 
Equation (23) is a generalization of the intertemporal equilibrium condition 
in production under certainty which requires that the risk-free real interest 
rate is equal to the intertemporal marginal rate of transformation or 
substitution given by the ratio of two marginal costs, and is derived under 
the condition that markets are complete. Existing studies on investment or 
dynamic input demands employ the undiscounted, rather than the 
discounted, cost function and show that the static profit maximization rule 
holds across time. As a result, none of them accounts for the intertemporal 
equilibrium condition in analysis or estimation [Chirinko (1993), Pindyck 
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and Rotemberg (1983)]. This is not a valid analysis because a firm makes 
a decision in the current period considering all future events; hence the 
output price and the cost or input prices have to be discounted.

Importantly, equation (23) is a stochastic discount factor equation (see the 
Appendix) where the stochastic discount factor is defined by the ratio of 
two marginal costs (see equation (7)). Thus the intertemporal equilibrium 
condition (23) helps us to determine the stochastic discount factor and 
therefore equity returns. This implies that equity returns and profits or 
production are interrelated. In traditional analyses of investment, however, 
the risk-free real interest rate serves as a discount rate that is assumed to 
be constant and distributed independent of a firm’s profits, implying that 
production and equity returns are independent of each other. This 
assumption reflects the long-standing intellectual division between 
macroeconomics and finance, but is not valid in an uncertain, stochastic 
environment. The discount rate is not fixed but varies over time, and affects 
the stream of a firm’s profits and hence production through optimal 
investment. In particular, since            (which is known as the 
Fisher equation), a firm’s nominal equity returns are determined by real 
returns and the rate of increase in the price of output. The rate of increase 
in the price of output is determined by the profit maximization condition 
where marginal revenue is equal to marginal cost. Further, production 
conditions clearly determine real equity returns as expounded in Section 2. 
Thus the discount rate or equity returns vary stochastically over time and 
are not independent of production.

Equation (19), together with (20), determines a firm’s investment decision 
once the adjustment cost function is specified. A convenient form that has 
desirable properties of the adjustment cost function is a quadratic function 
[Hubbard (1998)]:

         



 
   

 (25)

where   and  are parameters to be estimated. Given this adjustment cost 
function, the solution of (19) yields an investment specification:
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

 
  



  

   (26)

The investment-capital ratio     is equal to the growth rate of the 
capital stock, i.e.,           , when there is no 
depreciation of the capital stock or when the adjustment cost function is 
specified in terms of net investment. Tobin’s (marginal)  is defined as 
  

 
 , the ratio of the shadow value of a firm of having an additional 

unit of installed capital in place to the price of acquiring new capital. 
Equation (26) can then be rewritten as



 
  



  

   (27)

or



 
  


  (28)

where      . Since q reflects the expected profitability of a 
firm’s investment relative to the opportunity cost of capital, it can be 
considered the sufficient statistic for investment. An increase in q signals 
increased investment; thus investment is an increasing function of q. 
However, since marginal q is not observable, average q - defined as the 
ratio of the financial value of a firm to the replacement cost of the existing 
capital stock - is usually used. Hayashi (1982) shows that if the production 
function and the adjustment cost function are linear homogenous, then 
marginal and average q are equal. Notably, our analysis corroborates Fama 
and French’s (1992, 1993) use of the book-to-market ratio as a key 
determinant of equity returns. Tobin’s q determines optimal investment, 
which in turn determines equity returns. However, since Tobin’s (average) 
q is inversely related to the book-to-market ratio, this implies that the 
book-to- market ratio determines equity returns.

Now we can investigate the effect of equity returns on physical 
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investment. This can be done using (20) or (22). However, the nonlinearity 
of expected returns makes it hard to handle analytically. We take a loglinear 
approximation method to obtain a solution amenable to easy interpretation.7) 
If markets are complete, idiosyncratic risk is uncorrelated with equity 
returns and hence has no impact on the shadow price of capital. In this case, 
we can rewrite (20) as

       (29)




                         
 

To evaluate this expression, we begin by defining the following relation:

   ≡



      


 



  


 

  
   (30)

where   ≡                              
      . Taking logs on both sides of (30), we obtain

       
  

             (31)

The last term on the right-hand side of this equation is a nonlinear function 
of         . Taking a first-order Taylor expansion of it about 
a point       , we have

    ≈     
       

 (32)

7) We adopt Campbell’s (see Cambell, Lo, and MacKinley, 1997) loglinear approximation 
procedure of the present value model of the stock price with time-varying expected returns 
(see also Lettau and Ludvigson, 2002).
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where   and  are parameters of linearization defined by  ≡ 
    and  ≡          .

Next we take logs on both sides of (29) using (32) and assuming that 
either variables are jointly lognormally distributed, or applying a 
second-order Taylor expansion. Then (29) can be written in loglinear form 
as

      ≡      
           

   (33)

where   consists of linearization constants and variance terms. Equation 
(33) is a first-order linear difference equation for the log shadow price of 
capital    . Solving this equation forward, applying the law of iterated 
expectations, and imposing the condition that lim

→∝
        , we 

obtain the following expression:

 
 ≈ ∑  

∝                      (34)

Equation (34) shows that the (log) shadow price of capital is a function of 
two main discounted components: expected future marginal benefits of 
capital,                 and expected future equity returns, 
              . An increase in expected future marginal 
benefits or a decrease in expected future returns raises the shadow value 
of capital and therefore the optimal rate of investment. We can evaluate the 
effect of future marginal benefits of capital on the shadow value of capital 
and hence investment by evaluating     , where     
                                 

            . We obtain the expression for      
               from (5), and from (25) we derive
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

           
 
    

       
    

         (35)

Evaluating      from these two expressions is complicated because of 
nonlinearity, but it suggests that changes in future output levels, future 
variable input prices, future capital stock, and technology as well as 
adjustment shocks affect the shadow price of capital and therefore optimal 
investment.

We can evaluate expected future real returns                
in (34) from the asset pricing equation (14). We first note that the Fisher 
equation yields a conditional relation of the form:

                            (36)

which says that expected future nominal equity returns are the sum of 
expected future real returns and the expected future inflation rate. We can 
evaluate expected future real returns,                from (14) 
by applying the law of iterated expectations. The result gives us

              

           ∑  
         

                (37)

This equation relates expected future real returns to expected future risk 
premium and therefore to expected future risk factors such as output growth, 
input price growth, the investment-capital ratio, and technology shocks. 
Optimal investment responds to changes in expected future risk premium 
or equity returns. Hence we have
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PROPOSITION 5. Capital investment depends on the expected profitability 
of capital and expected equity risk premium. Capital investment is positively 
associated with the expected profitability of capital. An increase in the 
expected profitability raises optimal investment, while a decrease in the 
expected profitability lowers optimal investment. However, capital 
investment is negatively associated with the risk premium or expected future 
equity returns. An increase in the risk premium or expected future equity 
returns lowers the shadow price of capital and hence Tobin’s   through 
a higher rate for discounting future profitability of a firm. As a result, 
optimal investment falls. Conversely, a decrease in the risk premium or 
expected future equity returns raises Tobin’s   through a lower discount 
rate, leading to a rise in optimal investment.

Most studies on investment typically impose a constant risk premium and 
have unsuccessfully attempted to explain changes in investment from 
changes in risk-free rates of interest [Chirinko (1993), Hubbard (1998) for 
a survey]. However, there is much evidence that expected excess equity 
returns over a short-term interest rate vary over time and that this variation 
is much large relative to variation in the risk-free interest rates [Campbell 
et al. (1997), Cochrane (2001)]. This suggests that most variation in the cost 
of capital comes from time-varying expected stock returns with relatively 
constant interest rates, which clearly points to the empirical failure of 
standard or neoclassical investment studies.

A rise in overall uncertainty or a macroeconomic risk shock such as a 
war or energy shock increases the equity risk premium, which in turn 
depresses real economic activity through consumption or investment. A rise 
in the equity risk premium reduces the stock market value of wealth of 
consumers, which lowers consumption. Lettau and Ludvigson (2002) show 
that the consumption channel is not important in transmitting the effects of 
the risk premium to the real economy because consumers want to maintain 
relatively flat consumption paths over time. Instead, they present strong 
evidence that investment growth responds negatively to changes in future 
equity returns; hence investment is the channel through which a 
macroeconomic risk shock affects the real economy. From (34), we can see 
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that a macroeconomic shock reduces the shadow price of capital and hence 
Tobin’s Q, which in turn depresses investment and hence output and the 
economy.

Because the investment-capital ratio determines equity returns as 
demonstrated in Section 2, these results clearly suggest a joint or 
simultaneous link that lies between physical investment and equity returns. 
The following proposition captures an important finding of this study.

PROPOSITION 6. The intertemporal equilibrium condition determines 
equity returns, while a firm’s optimal investment decision is derived by 
adjustment costs. However, investment and equity returns are jointly related 
to each other. Capital stock growth or the investment-capital ratio 
determines equity returns. On the other hand, the investment-capital ratio 
in asset pricing is an endogenous choice variable in a firm’s investment 
decision and is determined by expected future equity returns.

This result reflects the fundamental difference in methodology between our 
model and earlier studies [Cochrane (1991, 1996)]. In these studies, 
adjustment costs drive both optimal investment and equity returns. In fact, 
in these models, equity returns are determined from the investment equation 
derived from an adjustment cost technology with a specification of the 
production function. Thus the model of investment can be equivalently 
expressed as producing an equity return equation, or the equity return 
equation yields an investment equation because the two specifications are 
the same [Cochrane (1991)]. In the present model, in contrast, equity returns 
are derived from a specification of the short-run variable cost function with 
capital taken as a quasi- fixed input, as demonstrated in Section 2; we do 
not need to specify an adjustment cost technology to account for equity 
returns. An investment equation, on the other hand, requires the 
specification of an adjustment cost technology. Thus, equity returns and 
investment decisions are derived from different equations, but they are 
interrelated. Equity returns are derived from the intertemporal equilibrium 
condition (23) or (24), but optimal investment is derived from Tobin’s Q 
as described in (28). Nonetheless, while investment determines equity 
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returns, it responds negatively to changes in the risk premium or future 
equity returns.

The simultaneity or jointness between equity returns and physical 
investment may provide some insight into studies that investigate the link 
between stock returns and real economic activity. Morck, Shleifer, and 
Vishny (1990) examine how the stock market affects investment and 
provide evidence that stock returns predict investment growth. Fama (1990), 
Chen (1991), and Cochrane (1991) find a strong positive relation between 
stock returns and future production growth rates. However, these studies fail 
to recognize the simultaneity that exists between stock returns and 
investment or output growth. In fact, it is argued that “Disentangling cause 
and effect in the relations between stock returns and real activity is an 
interesting and formidable challenge ….” [Fama (1990)]. As a result, earlier 
studies often resort to the causality test to determine the direction of a 
causal link between stock returns and real activity [Peiro (1996)]. Our 
analysis shows that this practice is not valid because the appropriate 
procedure is to recognize the simultaneity and to identify relevant variables 
influencing both stock returns and investment.

Ⅴ. Conclusion

Production variables such as industrial production or GDP and investment 
growth have often been used to explain equity returns of firms in many 
studies. However, these studies lack theoretical underpinnings of firm 
behavior. This paper has provided a microfoundational framework for 
analyzing the risk-return tradeoff of entrepreneurship and firms. A key risk 
factor identified in this study to explain equity returns of firms is the 
investment-capital ratio. This variable has been used in recent studies to 
account for the cross-sectional variation in equity returns [Cochrane (1996), 
Li, Vassalou and Xing (2006)]. This study attests to its relevance in asset 
pricing and showed that it captures the role of firm size and the 
book-to-market ratio.

Changes in the risk premium or equity returns impinge on a firm’s 
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optimal investment behavior. An important finding of this study is that a 
joint link exists between equity returns and physical investment: while 
investment determines equity returns, it responds negatively to changes in 
the risk premium. Although recent studies recognize the effect of 
time-varying equity returns on physical investment (Lettau and Ludvigson, 
2002), the simultaneous link between the two variables is not well 
understood. This paper’s results should provide useful information about 
risk analysis, the cost of capital, and investment analysis. Moreover, given 
the empirical success of the investment-based model, the proposed 
production-based model may provide a new insight into addressing many 
issues in consumption-based models such as the equity premium puzzle and 
the risk-free rate puzzle [Kocherlakota (1996), Cochrane (2001) for a 
survey]. Finally, it may be noted that our analysis is a partial equilibrium 
analysis looking at a firm’s intertemporal behavior. In a general equilibrium 
economy, equity returns are determined by consumption as well as 
production. Also, in general equilibrium, input prices are endogenous, which 
implies that changes in the risk premium can affect input prices such as 
wages. Addressing these issues is beyond the scope of the present paper 
but needs to be explored in future research.
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Appendix: The Stochastic Discount Factor Model

The stochastic discount factor model plays a pivotal role in modern 
analysis of asset pricing [Campbell et al. (1997), Cochrane (2001) for a full 
discussion]. In fact, most asset pricing models are special cases of the 
stochastic discount factor model. Our discussion is predicated on this model, 
so we give a brief summary of it.

We begin with the well-known result:

LEMMA [Cochrane (2001)]. In the absence of arbitrage opportunities, 
there exists a positive stochastic discount factor or pricing kernel, 
    , such that, for a traded asset with the price   at time t (t = 
1, 2, …) and a payoff     at time   , the following condition holds:

          (A1)

or
            (A2)

where  ⋅  is an expectation conditional on information available to 
investors at time , and    ≡       is the real rate of return on 
an asset from time  to time   .

The stochastic discount factor or pricing kernel is a random variable that 
assigns prices to cash flows or payoffs to be received in different states of 
the world. The above relation holds very generally in models that rule out 
arbitrage opportunities in financial markets. When markets are complete, 
there exists a unique stochastic discount factor that is consistent with 
observed asset prices. When markets are incomplete, however, there is more 
than one stochastic discount factor that satisfies condition (A1) or (A2).

The asset pricing equation (A2) implies bounds on the first and second 
moments of asset returns and the stochastic discount factor. Expanding the 
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expectation in (A2), we obtain

                       (A3)

which yields

         


  

         (A4)

where  ⋅ denotes covariance conditional on information at time t. 
For a risk-free or zero-beta asset with a payoff of one at time t+1 that is 
uncorrelated with the stochastic discount factor,           , 
where     is the risk-free rate of return from time  to time   . 
Assuming the existence of a risk-free asset and expanding the covariance 
in terms of correlation, we get

         
              

    
     (A5)

where          is the correlation coefficient between     and 
  , and      and      are standard deviations of    and 
   .

Since            ≤ , equation (A5) implies that the feasible set 
of means and variances of returns represented by the Sharpe ratio is limited 
by the volatility of the stochastic discount factor. In particular, we have

PROPOSITION A1 [Hansen and Jagannathan (1991)]. The Sharpe ratio for 
any asset places a lower bound on the volatility of the stochastic discount 
factor given by its standard deviation divided by the conditional mean:
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     
        



              

    
≤   

     (A6)

where               is the Sharpe ratio. The tightest lower 
bound is achieved by finding the risky asset, or portfolio assets, with the 
highest Sharp ratio.

Equation (A6) suggests that the mean-variance frontier of stochastic 
discount factors that price a given set of assets is related to the 
mean-variance frontier of asset returns. Hansen and Jagannathan (1991) 
provide a comprehensive analysis of the volatility bound, allowing for many 
risky assets and a risk-free asset, and derive implications for the restrictions 
that the stochastic discount factor must be positive. The stochastic discount 
factor model allows us to derive multifactor beta pricing models widely used 
in empirical work in finance [Cochraine (2001)]. Assume that the stochastic 
discount factor is a linear combination of   common factors 
          . For simplicity, assume that the factors have conditional 
mean zero and are orthogonal to one another. In particular, if

      ∑  
     (A7)

then

       (A8)

          ∑  
           (A9)

It follows:

PROPOSITION A2. Given the stochastic discount factor (A7), one 
can find a linear multifactor beta asset pricing model:
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         ∑  
       (A10)

where  ≡      ≡                 is the 
price of risk of the nth factor and    ≡     

               is the beta or regression coefficient 
of an asset return on that factor. Conversely, given the miltifactor beta 
pricing model (A10), one can find a stochastic discount factor of the form 
(A7).

Proposition 2 shows the link among the stochastic discount factor, beta 
pricing, and factor models. It is shown that various asset pricing models 
amount to alternative ways of applying the stochastic discount factor     
to data (see Cochrane, 2001). For the fabled, traditional capital asset pricing 
model (CAPM), the stochastic discount factor is a linear function of the 
market portfolio return:

        
 (A11)

where     is the return on the market portfolio from time  to  . It 
follows that

                  
  (A12)

Assuming the existence of a risk-free asset so that 
          

 , substitute (A12) into (A4) to obtain

        
      

        
  (A13)

Since the market portfolio is perfectly correlated with itself, equation (A13) 
implies that
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   
     

      
    

  (A14)

Solving this equation for  , we have

    
   

 

    
    



(A15)

Substituting this for bt allows us to rewrite (A14) as the familiar CAPM:

         
         

    
  (A16)

where    ≡            
 . We can see that

   ≡      
    

       
    

 (A17)

That is, the factor risk price is the market risk premium. Since     , 
equation (A17) implies that   .

In the consumption-based CAPM, the stochastic discount factor is a 
consumer’s intertemporal marginal rate of substitution in consumption given 
by the discounted ratio of marginal utilities in two successive periods. For 
a power or isoelastic specification of the utility function, the ratio of 
marginal utilities is equal to consumption growth. The risk premium of an 
asset is determined by covariance between asset returns and consumption 
growth together with the degree of risk aversion [Campbell et al. (1997), 
Cochrane (2001)]. The production-based model developed in this paper also 
belongs to a class of the stochastic discount factor model.

(접수일: 2012. 05. 08. / 수정일: 2012. 10. 10. / 게재확정일: 2012. 10. 26.)
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